tataabiocenter

We are

the world's largest provider of hands-on training in qPCR, Europe's leading provider of nucleic acid analysis services by qPCR, and Sweden's most comprehensive distributor of qPCR products

Two-tailed PCR for Precision Diagnostics

TATAA Biocenter

TATAA Biocenter was founded in 2001 by pioneers in qPCR, and have extensive knowledge and hands-on experience within nucleic acid analysis. TATAA Biocenter offers a full range of RT-qPCR and Next-Generation Sequencing research services, and develops and performs a broad spectrum of hands-on courses world-wide. TATAA also offers a carefully chosen selection of highquality products for qPCR and NGS applications. We are proud to provide expert support from our local specialists, from sample preparation to final result.

- READ MORE -

identification and typin... - READ MORE -

Offer: Pick products from at least 2 16 of the workfl.. NOV - READ MORE -

Challenges analyzing miRNAs (and other short NA)

- microRNAs are short (most 21-22 nt) and cannot fit two conventional PCR primers
- There is no common sequence feature to use for the enrichment and amplification.
- The mature miRNA sequence is present also in the pre- and the pri-miRNAs
- miRNA isoforms (isomiRs) might evade capture, due to terminal heterogeneity

Current methods make the microRNA longer

- Extension reduces sensitivity
- One probe only limits specificity

Two-tailed RT-qPCR

Two-tailed RT primer

Two-tailed RT-qPCR

Design concept

5' complementary segment contributes to the sensitivity of the assays

Design concept

5' complementary segment contributes to the **sensitivity** of the assays

◎ 5' complementary segment contributes to the **specificity** of the assays

Design concept

5' complementary segment contributes to the **sensitivity** of the assays

◎ 5' complementary segment contributes to the **specificity** of the assays

Sensitivity and dynamic range

Sequence specificity across the entire microRNA

С

				Rela	ative de	tection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
	А	100.00	0.07	0.46	0.14	0.31	0.01	0.00	0.00
	в	0.00	100.00	0.61	0.00	0.00	0.00	0.00	0.00
	С	0.01	0.18	100.00	0.00	0.00	0.00	0.00	0.00
ays	D	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00
Ass	Е	0.15	0.00	0.00	0.01	100.00	0.00	0.00	0.00
	F	0.18	0.00	0.01	0.00	0.00	100.00	0.02	0.00
	G	0.00	0.00	0.00	0.00	0.00	0.01	100.00	0.00
	I.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Two-tailed RT-qPCR

				Rela	ative de	etection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
	Α	100.00	0.27	50.71	2.17	1.58	2.47	1.55	0.00
	в	0.09	100.00	32.84	0.00	0.00	0.00	0.00	0.02
	С	48.91	27.00	100.00	0.31	0.56	0.95	0.06	0.00
ays	D	0.12	0.33	0.07	100.00	0.00	0.00	0.00	0.00
Ass	Е	0.13	0.13	0.13	0.00	100.00	0.03	0.03	0.02
1.0	F	0.73	0.85	0.72	0.02	0.00	100.00	0.05	0.04
	G	0.02	0.00	0.01	0.00	0.00	0.26	100.00	16.84
	L	0.00	0.00	0.00	0.00	0.00	0.00	0.38	100.00

Quanta

В

name	sequence
let-7a	UGAGGUAGUAGGUUGUAUAGUU
let-7b	UGAGGUAGUAGGUUGU <mark>GUG</mark> GUU
let-7c	UGAGGUAGUAGGUUGUAU <mark>G</mark> GUU
let-7d	AGAGGUAGUAGGUUG <mark>C</mark> AUAGUU
let-7e	UGAGGUAG <mark>G</mark> AGGUUGUAUAGUU
let-7f	UGAGGUAGUAGAUUGUAUAGUU
let-7g	UGAGGUAGUAG <mark>U</mark> UUGUA <mark>C</mark> AGUU
let-7i	UGAGGUAGUAGUUUGU <mark>GCU</mark> GUU

				Rela	ative de	tection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
	А	100.00	0.44	20.89	2.20	3.68	8.38	0.37	0.00
	в	0.19	100.00	22.48	0.00	0.00	0.01	0.00	0.01
	С	0.09	1.77	100.00	0.00	0.00	0.01	0.00	0.00
ays	D	2.59	0.01	1.37	100.00	0.01	0.01	0.00	0.00
ASS	Е	9.88	0.07	7.87	0.09	100.00	0.10	0.03	0.00
	F	2.00	0.16	0.22	0.12	0.01	100.00	0.15	0.00
G	G	0.96	0.00	0.32	0.01	0.01	2.72	100.00	0.02
	T	0.00	0.00	0.00	0.00	0.00	0.00	0.01	100.00

TaqMan

				Rela	ative de	tection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
	Α	100.00	12.64	55.52	101.75	122.47	76.72	48.68	0.69
	в	7.78	100.00	45.46	1.08	0.06	0.08	0.01	1.39
	С	66.40	75.14	100.00	28.76	1.13	9.15	0.45	0.01
ays	D	14.84	0.00	0.09	100.00	0.21	0.19	0.03	0.00
Ass	Е	51.07	0.04	20.96	21.57	100.00	6.52	0.99	0.00
	F	54.28	0.01	0.56	11.85	3.28	100.00	14.45	0.05
	G	0.07	0.00	0.00	0.00	0.00	0.18	100.00	0.91
	T	0.00	0.00	0.00	0.00	0.00	0.00	7.43	100.00

miQPCR

	Mature	Precursor	Relative detectior
let-7a	17.74	21.31	6.98%
let-7b	16.98	21.22	5.31%
let-7f	16.85	23.78	0.82%

ocenter

Benchmarking in biological samples

- Expression of 8 targets in 7 mouse tissues measured and compared with TaqMan miRNA assays
- O Excellent correlation of relative expression profiles between the two methods

Discrimination of isomiRs

2-tube Multiplexing

8 different RT primers were pooled for multiplex reverse transcribed and subsequent singleplex qPCR

		Δ Cq (relative to singleplex protocol)									
Sample	miR-122	miR-193a	miR-1a	miR-21a	miR-24	miR-30c	Let-7a				
brain	-0.12	0.93	1.26	2.41	0.11	-0.08	0.72				
cereb.	0.09	0.99	1.67	2.17	0.20	0.28	0.85				
heart	-0.21	0.67	1.38	2.06	-0.34	-0.13	0.50				
kidney	0.32	0.95	1.90	2.26	-0.14	0.07	0.25				
liver	-0.20	0.85	1.73	2.50	-0.28	-0.20	0.44				
lung	0.02	0.96	1.47	2.36	0.04	0.44	0.76				
muscle	-0.11	0.87	1.70	2.33	-0.17	-0.23	1.24				
average	-0.03	0.89	1.59	2.30	-0.08	0.02	0.68				
st.dev.	0.19	0.11	0.22	0.15	0.20	0.25	0.32				

1-tube RT-qPCR multiplexing is also possible using probes

2-tube Multiplexing

8 different RT primers were pooled for multiplex reverse transcribed and subsequent singleplex qPCR

1-tube RT-qPCR multiplexing is also possible using probes

Summary: Two-Tailed RT-PCR for microRNA

- New RT-qPCR method
- High sensitivity
- Wide dynamic range
- Very high specificity
- Unlimited multiplexing in RT with downstream singleplex qPCR
- RT-qPCR multiplexing with probes

Nucleic Acids Research, 2017 1 doi: 10.1093/nar/gkx588

Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification

Peter Androvic^{1,2}, Lukas Valihrach¹, Julie Elling³, Robert Sjoback³ and Mikael Kubista^{1,3,*}

¹Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, Vestec 252 50, Czech Republic, ²Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc 783 71, Czech Republic and ³TATAA Biocenter AB, Gothenburg 411 03, Sweden

SPIDIA

Standardisation and improvement of generic pre-analytical tools and procedures for in-vitro diagnostics

Subscribe to our

newsletter to receive latest news about the project

CONTACT US

Visit our contact form to contact SPIDIA and to submit comments and questions about this website.

SPIDIA was a 4.5-year project funded by the European Union FP7 programme. It brought together 16 leading academic institutions, international organisations and life sciences companies, coordinated by QIAGEN GmbH. The project tackled the standardisation and improvement of pre-analytical procedures for in-vitro diagnostics. Various new pre-analytical technologies were developed. Within the CEN/Technical Committee 140 for "In vitro medical devices", SPIDIA's results enabled to develop and introduce the first 9 CEN Technical Specifications (CEN/TS) for pre-analytical workflows in Europe.

The SPIDIA4P project builds on SPIDIA's results and is funded by the European Union's Horizon 2020 research and innovation programme. The consortium of 19 highly experienced partners from private industry including SMEs, public institutions and one European Standards Organisation is again coordinated by QIAGEN GmbH. It plans to initiate, develop and implement a comprehensive portfolio of an additional 14 pan-European pre-analytical CEN/TS and ISO/IS documents as well as external quality assessment schemes (EQAs), addressing the important pre-analytical workflows applied to personalised medicine.

Quality control tool box for microRNA

	<mark>5'-Phos</mark>	for sequencing	40 < GC/% < 6	<mark>64</mark>
Usage	Name	Sequence	GC %	Origin
Icolation	cel-miR-54-3p	/5Phos/UACCCGUAAUCUUCAUAAUCCGAG	41.7	C. elegans
spike	<u>miR</u> -spike-A	/5Phos/UGCAGCCCUACCGACACGUUCC	63.6	artificial
зріке-шз	<u>miR</u> -spike-B	/5Phos/ACUCAGGUUGUAGGAGCGGUCUU	52.2	artificial
RT spike-ins	cel-miR-76-3p	/5Phos/UUCGUUGUUGAUGAAGCCUUGA	40.9	C. elegans
	cel-miR-2-3p	/5Phos/UAUCACAGCCAGCUUUGAUGUGC	47.8	C. elegans

Endogenous controls mir-451a mir-23a

Test system for optimization

- Human plasma (K₂EDTA BD Vacutainer tubes; 1500g/3000g)
- Human serum (8.5 ml, vacutainer SST II Advanced tubes)
- Rat serum (1ml Eppendorf tube; 1000g/3000g)
- Extraction: miRNeasy Serum/Plasma Advance kit (Qiagen)
- RT: GrandScript FreePrime (TATAA)
- qPCR: GrandMaster SYBR (TATAA)

Workflow

200x

200x

Isolation spike-in mix

RNA oligo	Final concentration (copies/µl)
cel-miR-54	1.00E+07
spike_A	2.00E+05
spike_B	4.00E+03

RT spike-in mix

RNA oligo	Final concentration (copies/µl)	
cel-miR-76	1.00E+07	40000x
cel-miR-2	4.00E+03	

Factors tested/optimized

- Initial input volume used for RNA isolation. Risk for carry over of contaminants. Saturation of column. Most vendors recommend: 200 μl. However, optimum volume seem to depend on:
 - isolation protocol
 - sample type
 - organism.
- **Hemolysis** was prepared by addition of lysed erythrocytes (by freeze-thawing) in a serial dilution. Ratio mir-451a:mir-23a is tested as indicator for hemolysis
 - Mir-451a is highly abundant in erythrocytes
 - Mir-23a is abundant in serum/plasma, but not in erythrocytes
- Effect of glycogen as carrier

Human plasma

miRNeasy Serum/Plasma Advanced kit (Qiagen)

A Human plasma

Human serum

miRNeasy Serum/Plasma Advanced kit (Qiagen)

B Human serum

tataabiocenter

Endogenous miRNAs

C Rat serum

Rat serum

Isolation spike-ins

miRNeasy Serum/Plasma Advanced kit (Qiagen)

Conclusions

Extracting with the miRNeasy Serum/Plasma Advanced kit (Qiagen) we find:

- Relation between input sample volume and amount of cDNA is **non-linear** due to extraction issues.
- Poor yields are observed with low as well as high input volumes. Working volumes are:
 - Human plasma: 250 μl
 - Human serum: 300 500 μl
 - Rat serum: 150 μl

Effect of glycogen (human plasma)

Hemolysis

Sample	1	2	3	4	5	6	7	8	9
Erythrocyte (v/v)	1%	0.5%	0.25%	0.125%	0.063%	0.031%	0.016%	0.008%	0%
Absorb. 414nm	2.367	1.498	0.852	0.491	0.313	0.220	0.172	0.146	0.118
Absorb. 540nm	0.339	0.174	0.098	0.055	0.033	0.025	0.021	0.015	0.018
Absorb. 578 nm	0.354	0.178	0.100	0.053	0.029	0.020	0.019	0.011	0.013
ΔCq ^(miR-23a – miR-451a)	18.51	18.24	17.86	16.57	15.70	15.07	14.46	13.55	12.83

mir-451a:mir-23a as indicator for hemolysis

P. Androvic, L. Valihrach, N. Romanyuk, M. Kubista, Nature Scientific Reports (accepted)

The Project

Home

THE PROJECT PARTNERS NEWS CAREERS

Cancer treatment and monitoring through identification of circulating tumor cells and tumor related nucleic acids in blood

Partners

TATAA Alu QC assays

The Alu element is the most abundant sequence being present in over 1 million copies comprising ~11% of the genome

TATAA has developed three Alu assays

- TATAA Alu-60 (60 bp)
- TATAA Alu-135 (135 bp)
- TATAA Alu-187 (187 bp)

Application 1: Super sensitive assay to measure total amount of genomic DNA in a sample.

Application 2: Test for gDNA contamination in master mixes, primer mixes and other reagents.

https://webshop.tataa.com/product.html/tataa-alu-assay?category_id=66

Applications using TATAA Alu assays

https://webshop.tataa.com/product.html/human-genomic-dna-standard-calibrated?category_id=43